Metal-organic polyhedra for selective sensing of ribonucleosides through the cooperation of hydrogen-bonding interactions.

نویسندگان

  • Yang Liu
  • Xiao Wu
  • Cheng He
  • Zhongyi Li
  • Chunying Duan
چکیده

The fluorescence recognition of octahedral nanocages M-QT1 (M = Co, Zn) and metallotricycle Pd-QD, that are comprised of luminescence active quinoline groups and several kinds of amide groups, on ribonucleosides was investigated. The amide groups located on the opening windows or inner surface of the polyhedra and polygon, respectively, providing special environments for the size or shape-selective dynamic molecular recognition and amplified the guest-bonding events to produce a measurable output. While the participation of the active CH moiety in hydrogen bonding interactions corresponding to these amide groups caused the M-QT1 polyhedra to exhibit selectivity towards cytidine over other ribonucleosides, the possible two-fold hydrogen bonding interactions between the nucleosides and the amide groups in Pd-QD made the tricycle show a uridine-specific response. All these results demonstrated that these metal-organic architectures having amide groups and functionalized moieties are potential luminescence chemosensors for the selective sensing of special ribonucleosides, through modifying the hydrogen-bonding interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Possibility of Selective Adsorption and Sensing of the Noble Gaseous Species by the C20 Fullerene, the Graphene Sheets, and the N4B4 Cluster

There are only a handful reports about the sensor systems having the ability of detecting the existence of the noble gases. Chemical reluctance of these gaseous species causes them to have no chemical interactions like hydrogen bonding with the chemically designed nano-sized sensors. Noble gasses usually have no atomic charges nor do change the total polarity of the molecular sensor systems. Th...

متن کامل

An amine/imine functionalized microporous MOF as a new fluorescent probe exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions

Nowadays metal-organic frameworks with multiple luminescent centers are very fascinating as multifunctional luminescent material because of their luminescence properties, which could be systematically tuned by deliberate use of organic ligands and metal ions. In this research, we explored a microporous mixed-ligand MOF for highly selective and sensitive detection of metal ions. A two-fold inter...

متن کامل

Metal-organic frameworks with functional pores for recognition of small molecules.

Molecular recognition, an important process in biological and chemical systems, governs the diverse functions of a variety of enzymes and unique properties of some synthetic receptors. Because molecular recognition is based on weak interactions between receptors and substrates, the design and assembly of synthetic receptors to mimic biological systems and the development of novel materials to d...

متن کامل

Lanthanide luminescent anion sensing: evidence of multiple anion recognition through hydrogen bonding and metal ion coordination.

The delayed lanthanide luminescence of the terbium [Tb(III)] diaryl-urea complex 1xTb is significantly enhanced upon sensing of dihydrogenphosphate (H2PO4(-)) in CH3CN, which occurs through multiple anion binding through hydrogen bonding interactions and potential metal ion coordination to Tb(III).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 39 33  شماره 

صفحات  -

تاریخ انتشار 2010